Linear Versus Hereditary Discrepancy

نویسندگان

  • Tom Bohman
  • Ron Holzman
چکیده

Lovász, Spencer and Vesztergombi proved that the linear discrepancy of a hypergraph H is bounded above by the hereditary discrepancy of H, and conjectured a sharper bound that involves the number of vertices in H. In this paper we give a short proof of this conjecture for hypergraphs of hereditary discrepancy 1. For hypergraphs of higher hereditary discrepancy we give some partial results and propose a sharpening of the conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Hereditary Discrepancy via Small Width Ellipsoids

The Discrepancy of a hypergraph is the minimum attainable value, over twocolorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovász, Spencer and Vesztergombi (1986) related the natural extension ...

متن کامل

Linear And Hereditary Discrepancy

Let A be a m n{matrix. Linear and hereditary discrepancy are deened as lindisc(A) := maxfminfkA(p ")k 1 j " 2 ff1; 1g n g jp 2 1; 1] n g herdisc(A) := maxfminfk(a ij) i2m];j2J "k 1 j " 2 ff1; 1g n g jJ n]g: We're investigating connections between the two concepts. Best results known are lindisc(A) 2(1 2 2 n) herdisc(A) for any matrix A and an example of an A satisfying lindisc(A) = 2(1 1 n+1) h...

متن کامل

On the Linear and Hereditary Discrepancies

We exhibit a set system S 0 such that any set system containing it has linear discrepancy at least 2. Let V be a nite set and S 2 V a system of subsets of V. The incidence matrix A of (V; S) has rows indexed by the sets of S and the columns indexed by the points of V. The column corresponding to a point v 2 V is denoted by a v. A coloring of V is a mapping : V ! f?1; +1g. The discrepancy of S, ...

متن کامل

The Hereditary Discrepancy Is Nearly Independent of the Number of Colors

We investigate the discrepancy (or balanced coloring) problem for hypergraphs and matrices in arbitrary numbers of colors. We show that the hereditary discrepancy in two different numbers a, b ∈ N≥2 of colors is the same apart from constant factors, i.e., herdisc(·, b) = Θ(herdisc(·, a)). This contrasts the ordinary discrepancy problem, where no correlation exists in many cases.

متن کامل

Discrepancy After Adding A Single Set

We show that the hereditary discrepancy of a hypergraph F on n points increases by a factor of at most O(log n) when one adds a new edge to F . Let X be a set of n points. We say that a hypergraph F on X has discrepancy h if h is the smallest integer satisfying the following: There is a coloring χ: X → {−1, +1} such that for every edge S ∈ F , |χ(S)| ≤ h, where we write χ(S) for ∑ x∈S χ(x). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004